Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Viruses ; 16(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38400038

ABSTRACT

African swine fever (ASF) is a transboundary viral disease which causes high mortality in pigs. In many low- and middle-income countries and in remote areas where diagnostic surveillance for ASF virus (ASFV) is undertaken, access to trained animal health technicians, sample collection, cold chain storage and transport of samples to suitably equipped laboratories can be limiting when traditional sampling and laboratory tests are used. Previously published studies have demonstrated that alternative sampling matrices such as swabs and filter papers can be tested using PCR without refrigeration for up to a week. This study used Genotube® swabs stored in temperate and tropical climates without refrigeration for four weeks after collection to demonstrate there was no change in test performance and results using loop-mediated isothermal amplification (LAMP) ASFV detection on a series of pig serum samples including serum spiked with a synthetic ASFV positive control, naturally acquired ASFV positive serum from Timor-Leste and negative ASFV serum samples. The use of Genotube® swabs for ASFV detection for surveillance purposes, coupled with testing platforms such as LAMP, can provide an alternative to traditional testing methodology where resources are limited and time from collection to testing of samples is prolonged.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Refrigeration , DNA, Viral , Specimen Handling
3.
Nat Microbiol ; 9(2): 377-389, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263454

ABSTRACT

Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.


Subject(s)
Aedes , Buruli Ulcer , Mycobacterium ulcerans , Animals , Humans , Buruli Ulcer/epidemiology , Buruli Ulcer/genetics , Buruli Ulcer/microbiology , Mycobacterium ulcerans/genetics , Australia , Genome, Bacterial , Aedes/genetics
4.
Heredity (Edinb) ; 130(2): 99-108, 2023 02.
Article in English | MEDLINE | ID: mdl-36539450

ABSTRACT

Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.


Subject(s)
Aedes , Animals , Humans , Australia , Urban Population , Genomics , Population Density
5.
Viruses ; 14(12)2022 12 11.
Article in English | MEDLINE | ID: mdl-36560765

ABSTRACT

Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.


Subject(s)
Arbovirus Infections , Arboviruses , Culicidae , Animals , Humans , Arboviruses/genetics , Phylogeny , Mosquito Vectors , Victoria
6.
PLoS One ; 17(9): e0274627, 2022.
Article in English | MEDLINE | ID: mdl-36099259

ABSTRACT

In recent years reported cases of Buruli ulcer, caused by Mycobacterium ulcerans, have increased substantially in Victoria, Australia, with the epidemic also expanding geographically. To develop an understanding of how M. ulcerans circulates in the environment and transmits to humans we analyzed environmental samples collected from 115 properties of recent Buruli ulcer cases and from 115 postcode-matched control properties, for the presence of M. ulcerans. Environmental factors associated with increased odds of M. ulcerans presence at a property included certain native plant species and native vegetation in general, more alkaline soil, lower altitude, the presence of common ringtail possums (Pseudocheirus peregrinus) and overhead powerlines. However, only overhead powerlines and the absence of the native plant Melaleuca lanceolata were associated with Buruli ulcer case properties. Samples positive for M. ulcerans were more likely to be found at case properties and were associated with detections of M. ulcerans in ringtail possum feces, supporting the hypothesis that M. ulcerans is zoonotic, with ringtail possums the strongest reservoir host candidate. However, the disparity in environmental risk factors associated with M. ulcerans positive properties versus case properties indicates the involvement of human behavior or the influence of other environmental factors in disease acquisition that requires further study.


Subject(s)
Buruli Ulcer , Environmental Microbiology , Mycobacterium ulcerans , Animals , Humans , Buruli Ulcer/epidemiology , Marsupialia/microbiology , Mycobacterium ulcerans/isolation & purification , Risk Factors , Victoria/epidemiology
7.
Sci Rep ; 12(1): 11886, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831457

ABSTRACT

Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.


Subject(s)
Influenza A virus , Influenza in Birds , Tool Use Behavior , Animals , Australia , Hemagglutinins , Influenza A virus/genetics , Poultry , Technology
8.
Parasit Vectors ; 14(1): 434, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454606

ABSTRACT

BACKGROUND: Aedes vigilax is one of the most significant arbovirus vector and pest species in Australia's coastal regions. Occurring in multiple countries, this mosquito species occurs as a species complex which has been separated into three clades with two detected in Australia. Until recently, Ae. vigilax has largely been absent from Victoria, only occasionally caught over the years, with no reported detections from 2010 to 2016. Complicating the detection of Ae. vigilax is the shared sympatric distribution to the morphologically similar Ae. camptorhynchus, which can exceed 10,000 mosquitoes in a single trap night in Victoria. Currently, there are no molecular assays available for the detection of Ae. vigilax. We aim to develop a quantitative PCR (qPCR) for the detection of Ae. vigilax, with the specificity and sensitivity of this assay assessed as well as a method to process whole mosquito traps. METHODS: Trapping was performed during the 2017-2020 mosquito season in Victoria in two coastal areas across these 3 consecutive years. A qPCR assay was designed to allow rapid identification of Ae. vigilax as well as a whole mosquito trap homogenizing and processing methodology. Phylogenetic analysis was performed to determine which clade Ae. vigilax from Victoria was closest to. RESULTS: Aedes vigilax was successfully detected each year across two coastal areas of Victoria, confirming the presence of this species. The qPCR assay was proven to be sensitive and specific to Ae. vigilax, with trap sizes up to 1000 mosquitoes showing no inhibition in detection sensitivity. Phylogenetic analysis revealed that Ae. vigilax from Victoria is associated with clade III, showing high sequence similarity to those previously collected in New South Wales, Queensland and Western Australia. CONCLUSIONS: Aedes vigilax is a significant vector species that shares an overlapping distribution to the morphologically similar Ae. camptorhynchus, making detection difficult. Here, we have outlined the implementation of a specific and sensitive molecular screening assay coupled with a method to process samples for detection of Ae. vigilax in collections with large numbers of non-target species.


Subject(s)
Aedes/genetics , Mosquito Vectors/genetics , Phylogeny , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Aedes/classification , Animals , Mosquito Control , Ochlerotatus/genetics , Seasons , Victoria
9.
Front Vet Sci ; 8: 672048, 2021.
Article in English | MEDLINE | ID: mdl-34235203

ABSTRACT

African Swine Fever (ASF) has been spreading in numerous southeast Asian countries since a major incursion in mainland China in 2018. Timor-Leste confirmed an outbreak of ASF in September 2019 which resulted in high mortalities in affected pigs. Pigs in Timor-Leste are the second most common type of livestock kept by villagers and represent a traditionally important source of income and prestige for householders. In order to understand the extent of ASF infected villages in Timor-Leste a prevalence survey was designed and conducted in November-December 2019. Timor-Leste has limited laboratory facilities and access to qPCR diagnostic tests. Therefore, a loop mediated isothermal amplification (LAMP) assay was used to detect ASF positive blood samples collected during the prevalence survey. The LAMP assay was proven to be a robust, highly specific and sensitive laboratory test for ASF suitable for use in the field and where there are limited laboratory facilities. The results of the prevalence survey allowed the extent of the ASF incursion to be delineated and the introduction of a disease response strategy to limit the spread of ASF and assist in the recovery of the pig population in Timor-Leste.

10.
Transbound Emerg Dis ; 68(6): 3277-3287, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33207044

ABSTRACT

An idiopathic clinical syndrome had been described in weaned dairy calves in the state of Victoria, Australia, where affected animals presented with diarrhoea, ill-thrift, enteritis and ulceration of the upper alimentary tract, with occasional oral/nasal ulcers. Between 7 November 2016 and 31 March 2019, 34 Victorian cattle herds were investigated, after each reported five or more weaned calves with diarrhoea and/or ill-thrift, or at least one calf with oral/nasal ulceration. Primary study objectives included the development of a detailed case definition for the clinical syndrome, termed upper alimentary tract ulcerative syndrome (UAUS) and the identification of potential causative virus(es) using metagenomics. A diagnosis of UAUS could not be made based solely on clinical signs and required histopathological assessment of post-mortem samples. Specifically, this included the identification of multifocal to coalescing areas of mucosal epithelial necrosis at all depths of the stratified squamous epithelium of the oesophagus, along with exclusion of bovine viral diarrhoea virus. Based on this case definition, twelve herds were diagnosed with clinical UAUS across the three dairying regions of Victoria, while thirteen were ruled UAUS-negative. The status of the nine remaining herds was unresolved due to a lack of required post-mortem samples. Metatranscriptomic analysis on oral swabs and oesopharyngeal samples from confirmed UAUS cases did not detect a virus common to the cross-sectional sample collection.


Subject(s)
Cattle Diseases , Animals , Cattle , Cattle Diseases/epidemiology , Cross-Sectional Studies , Dairying , Ulcer/veterinary , Victoria
11.
Viruses ; 12(12)2020 12 15.
Article in English | MEDLINE | ID: mdl-33334037

ABSTRACT

Recent outbreaks of African swine fever virus (ASFV) have seen the movement of this virus into multiple new regions with devastating impact. Many of these outbreaks are occurring in remote, or resource-limited areas, that do not have access to molecular laboratories. Loop-mediated isothermal amplification (LAMP) is a rapid point of care test that can overcome a range of inhibitors. We outline further development of a real-time ASFV LAMP, including field verification during an outbreak in Timor-Leste. To increase field applicability, the extraction step was removed and an internal amplification control (IAC) was implemented. Assay performance was assessed in six different sample matrices and verified for a range of clinical samples. A LAMP detection limit of 400 copies/rxn was determined based on synthetic positive control spikes. A colourmetric LAMP assay was also assessed on serum samples. Comparison of the LAMP assay to a quantitative polymerase chain reaction (qPCR) was performed on clinical ASFV samples, using both serum and oral/rectal swabs, with a substantial level of agreement observed. The further verification of the ASFV LAMP assay, removal of extraction step, implementation of an IAC and the assessment of a range of sample matrix, further support the use of this assay for rapid in-field detection of ASFV.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/virology , Disease Outbreaks , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , African Swine Fever/diagnosis , African Swine Fever Virus/isolation & purification , Animals , Female , Male , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Swine , Viremia
12.
Sci Rep ; 9(1): 19398, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852942

ABSTRACT

The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.


Subject(s)
Arboviruses/genetics , Culicidae/virology , Metagenome/genetics , Transcriptome/genetics , Animals , Arboviruses/isolation & purification , Australia/epidemiology , Culex/genetics , Culex/virology , Culicidae/genetics , Humans , Mosquito Vectors/genetics , Mosquito Vectors/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Ross River virus/genetics , Ross River virus/isolation & purification , Sensitivity and Specificity
13.
Emerg Infect Dis ; 23(8): 1409-1410, 2017 08.
Article in English | MEDLINE | ID: mdl-28726605

ABSTRACT

The bacterial pathogen Elizabethkingia is known to exist in certain species of mosquito but was unknown in other arthropods. We report the detection and identification of Elizabethkingia in species of Culicoides biting midge in Australia, raising the possibility of bacterial transmission via this species.


Subject(s)
Ceratopogonidae/microbiology , Flavobacteriaceae/isolation & purification , Insect Vectors/microbiology , Animals , Australia , Flavobacteriaceae/classification , Flavobacteriaceae/genetics , RNA, Ribosomal, 16S
14.
Virol J ; 14(1): 108, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28599659

ABSTRACT

BACKGROUND: Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species. METHODS: Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR. RESULTS: Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency. CONCLUSIONS: The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.


Subject(s)
Gastrointestinal Tract/virology , Mosquito Vectors/virology , RNA, Viral/analysis , Saliva/virology , Zika Virus/isolation & purification , Animals , Australia , Climate , Disease Transmission, Infectious , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Risk Assessment , Zika Virus/genetics , Zika Virus Infection/transmission
15.
Appl Environ Microbiol ; 81(18): 6177-88, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150447

ABSTRACT

Bacterial endosymbionts have been identified as potentially useful biological control agents for a range of invertebrate vectors of disease. Previous studies of Culicoides (Diptera: Ceratopogonidae) species using conventional PCR assays have provided evidence of Wolbachia (1/33) and Cardinium (8/33) infections. Here, we screened 20 species of Culicoides for Wolbachia and Cardinium, utilizing a combination of conventional PCR and more sensitive quantitative PCR (qPCR) assays. Low levels of Cardinium DNA were detected in females of all but one of the Culicoides species screened, and low levels of Wolbachia were detected in females of 9 of the 20 Culicoides species. Sequence analysis based on partial 16S rRNA gene and gyrB sequences identified "Candidatus Cardinium hertigii" from group C, which has previously been identified in Culicoides from Japan, Israel, and the United Kingdom. Wolbachia strains detected in this study showed 98 to 99% sequence identity to Wolbachia previously detected from Culicoides based on the 16S rRNA gene, whereas a strain with a novel wsp sequence was identified in Culicoides narrabeenensis. Cardinium isolates grouped to geographical regions independent of the host Culicoides species, suggesting possible geographical barriers to Cardinium movement. Screening also identified Asaia bacteria in Culicoides. These findings point to a diversity of low-level endosymbiont infections in Culicoides, providing candidates for further characterization and highlighting the widespread occurrence of these endosymbionts in this insect group.


Subject(s)
Bacteroidetes/isolation & purification , Ceratopogonidae/microbiology , Wolbachia/isolation & purification , Animals , Australia , Bacteroidetes/classification , Bacteroidetes/genetics , Cluster Analysis , DNA Gyrase/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Wolbachia/classification , Wolbachia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...